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Abstract

This paper presents dimensionless natural frequency parameters for completely free rectangular plates, calculated using

the superposition method (SM) and the finite difference method (FDM). The convergence tests show that while the SM

gives upper bound results the FDM gives lower bound results. The results obtained using the FDM appears to be the best

lower bound results available to date. Together with the upper bound results from the SM, the maximum possible error in

the first 12 non-zero natural frequency parameters for completely free rectangular plates of various aspects ratios ranging

from 1:1 to 3:1 can be determined from the results presented here.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The free vibration analysis of beams and plates has a long research history, and some of this work was
devoted to estimation of upper and lower bounds to the natural frequencies. An excellent review of the
literature relating to vibration analysis of plates and the methods used was published by Leissa [1]. Most of
these methods give upper bounds for the natural frequencies of the completely free plates as the solution is
either based on assumed shapes which effectively overconstrain the system or using the superposition [2] of
exact solutions for plates with more constraints. Among the methods for finding upperbounds, Gorman’s
superposition method (SM) [2,3] is very efficient and appears to give the lowest (and therefore the best)
upperbound values for the natural frequencies of plates with various aspect ratios. However, it gives
upperbound only for certain boundary conditions. Of the articles that give both upper and lower bound
results, Ku [4] gives upper and lower bounds for the fundamental natural frequency of beams by using the
Rayleigh quotient and Timoshenko quotient, respectively. These methods are not applicable for determining
higher modes. Marangoni et al. [5] present bounded natural frequencies of clamped orthotropic rectangular
plates; they obtained the upperbound results using the Rayleigh–Ritz method and the lower bound results
using a decomposition method. Kuttler and Sigillito [6] give estimates of upper and lower bounds for
frequencies of trapezoidal and triangular clamped plates by using selected trial functions.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

a plate dimension in x direction
b plate dimension in y direction
D plate flexural rigidity, (Eh/12)/(1�n2)
E modulus of elasticity of material
H mesh size parallel to x direction, a/(P�1)
K mesh size parallel to y direction, b/(Q�1)
m mass per unit area of plate
M bending moment distributed along edge

of plate

P the number of nodes in x direction
Q the number of nodes in y direction
V plate vertical edge reaction
w plate lateral deflection
x, y plate spatial coordinates
F aspect ratio of plate b/a

n Poisson’s ratio of material
O oa2

ffiffiffiffiffiffiffiffiffi
r=D

p
o radian frequency of vibration
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The search for a method to find a lower bound solution for completely free plates led to several articles on
the well-known finite difference method (FDM). It is worth noting here that in 1943, Courant [7], regarded the
FDM as often preferable to other methods, such as the Rayleigh–Ritz method. In 1956, Weinberger [8] has
shown that the FDM gives lower bounds for Laplace equations with constrained boundaries for first natural
frequency and subsequently gave a proof showing that this is true for higher modes also [9]. In Ref. [8],
Weinberger states that although the focus of the paper is for an eigenvalue problem involving a Laplace
operator, the lowerboundedness is true for higher order operators such as the biharmonic operator too. This
means that the FDM may be expected to give lower bound results for eigenvalues of plates. Hubbard has then
shown that the FDM gives lower bound for natural frequencies for a free membrane [10]. The proofs for the
lowerboundedness of the natural frequencies are based on the central difference formula, although this is not
spelled out in these references. However, the references make it clear that for the lower boundedness to hold,
the FD grid area must include the entire physical system. The authors are unaware of any specific proof for the
lowerboundedness of the natural frequencies of completely free plates. However, the nature of convergence of
the numerical results for the natural frequencies of completely free rectangular plates indicates that the
lowerboundedness holds for plates too.

The results presented here were obtained by solving the plate vibration equation using the FDM and the SM
for the case of completely free rectangular plates with various aspect ratios.
2. Procedure

2.1. Governing differential equation

The partial differential equation governing the out-of-plane vibration of rectangular plates is [11]

q4W ðx; yÞ
qx4

þ 2
q4W ðx; yÞ

qx2qy2
þ

q4W ðx; yÞ

qy4
�

mo2

D
W ðx; yÞ ¼ 0. (1)

For the FDM, the plate is meshed as shown in Fig. 1(a) and Eq. (1) is approximated in the finite difference
form with central-difference approximation, in terms of the nodal displacements. The molecular FD equation
at node (i,j) depends on the values of displacement of this and adjacent nodes shown in Fig. 1(b). The basic
finite difference operators are given below.

qw

qx

� �
i;j

¼
wiþ1;j � wi�1;j

2H
, (2)

qw

qy

� �
i;j

¼
wi;jþ1 � wi;j�1

2K
, (3)
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Fig. 1. A meshed completely free plate (a), and FD molecular formula of the plate governing equation (b).
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q2w
qx2
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¼
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, (4)
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, (5)
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2HK
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The FD form of Eq (1) is

X13
k¼1

Ckwn

k ¼ 0, (14)

where

wn

1 ¼ wði; j � 2Þ; wn

2 ¼ wði � 1; j � 1Þ; wn

3 ¼ wði; j � 1Þ,

wn

4 ¼ wði þ 1; j � 1Þ; wn

5 ¼ wði � 2; jÞ; wn

6 ¼ wði � 1; jÞ; wn

7 ¼ wði; jÞ,

wn

8 ¼ wði þ 1; jÞ; wn

9 ¼ wði þ 2; jÞ; wn

10 ¼ wði � 1; j þ 1Þ,

wn

11 ¼ wði; j þ 1Þ; wn

12 ¼ wði þ 1; j þ 1Þ; wn

13 ¼ wði; j þ 2Þ, ð15Þ

C1 ¼ C13 ¼
1
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C5 ¼ C9 ¼
1

H4
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H2K2
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1
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� �
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6

H4
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K4
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8

H2K2

� �
�

mo2

D
. (22)

The central difference formula reduces the error in the second derivatives to the order of H4, K4 and the
error in the higher derivatives would also be of this or higher order.

2.2. Boundary conditions

Figs. 2(a) and (b) show the distribution of nodes when the FD equation is applied at an edge of the plate
and at a corner, respectively, where w�1 to w�13 are nodal deflections. The projected deflections outside of the
plate need to be expressed in term of the deflections at the internal nodes by using boundary conditions.

The boundary conditions of a free edge are given in Leissa’s monograph [1]. Bending moment and vertical
edge reaction at a free edge are zero. Those boundary conditions at the edges are expressed as:

at x ¼ 0 or a (i ¼ 1 or P),

q2w
qx2

� �
þ n

q2w

qy2

� �
¼ 0, (23a)

q3w

qx3

� �
þ nn

q3w

qxqy2

� �
¼ 0, (23b)

at y ¼ 0 or b (j ¼ 1 or Q),

q2w
qy2

� �
þ n

q2w

qx2

� �
¼ 0, (24a)
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Fig. 2. The node distribution (a) at the edge and (b) at the corner.
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q3w

qy3

� �
þ nn

q3w

qx2qy

� �
¼ 0. (24b)

The above boundary conditions are not enough to cover all nodes outside of the plate at the corners.
The following boundary condition at the corners [1], are also needed.

q2w

qxqy

� �
¼ 0 ðat the cornersÞ. (25)
3. Result and discussion

The numerical results obtained using the FDM and the SM are presented and compared to the natural
frequency parameters in earlier literature. The natural frequencies of completely free plates are given in the
dimensionless form, O ¼ oa2

ffiffiffiffiffiffiffiffiffi
r=D

p
, which will be referred to as the natural frequency parameter. The natural

frequency parameter is importantly related to plate aspect ratio (F ¼ b/a) rather than the dimensions of plate.
All natural frequency parameters were calculated by using the software MATLAB in default double precision.
However, the maximum number of nodes used in the FDM to compute the natural frequency parameters is
limited to 55� 55 due to computing limitations.

Table 1 shows the non-zero natural frequency parameters of completely free rectangular plates with aspect
ratios ranging from 1:1 to 3:1 obtained by the FDM. The two letters adjacent to the values indicate the type of
modal shapes. SS, AA, SA and AS mean that the mode is symmetric about both the x- and y-axes,
antisymmetric about both axes, symmetric about the x-axis and antisymmetric about the y-axis, and
antisymmetric about the x-axis and symmetric about the y-axis, respectively. The natural frequency
parameters obtained by using the SM are also shown in Table 1. The corresponding results obtained by using
the FDM have excellent agreement with results of the SM. The results by the FDM are slightly lower than
those by the SM.

Convergence test were carried out for all the above aspect ratios and modes. The results for the fundamental
natural frequency of a square plate are shown in Fig. 3. It can be seen that both methods give converging
results; the FDM gives lower bound results while the SM gives upper bound results. The rate of convergence
of the SM is significantly better than that of the FDM. The first author generated the results for a free plate
using the SM [12] for various aspect ratios and number of terms. The results for other aspects ratios and for
higher modes are not presented in this paper but they are available in the ME Thesis of the first author [12],
which also gives the MATLAB codes developed for this work. The results in Ref. [12] show that both SM and
FDM consistently give results that converge towards each other (upper and lower bounds) as the matrix size is
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Table 1

The lower and upper bounds of natural frequency parameters for various aspect ratios for n ¼ 0.3

F 1 1.25 1.5

Mode Lower bound

(FDM)

Upper bound

(SM)

Lower bound

(FDM)

Upper bound

(SM)

Lower bound

(FDM)

Upper bound

(SM)

1 13.46 13.47 AA 10.75 10.76 AA 8.926 8.931 AA

2 19.57 19.60 SS 13.57 13.59 SS 9.503 9.517 SS

3 24.24 24.27 SS 22.36 22.39 SS 20.57 20.60 SA

4 34.75 34.80 SA or AS 25.86 25.89 SA 22.15 22.18 SS

5 34.75 34.80 30.34 30.38 AS 25.58 25.65 AS

6 60.90 61.09 SA or AS 39.34 39.45 AS 29.73 29.79 AS

7 60.90 61.09 50.15 50.30 AA 38.05 38.16 AA

8 63.56 63.69 SS 51.39 51.49 SS 43.84 43.93 SS

9 69.04 69.27 AA 60.74 60.94 SA 53.07 53.35 SS

10 76.95 77.17 AA 69.27 69.49 AA 59.82 60.05 SA

11 105.1 105.5 SA or AS 76.17 76.58 SS 64.63 64.92 SA

12 105.1 105.5 80.23 80.48 AS 65.55 65.75 AS

F 2 2.5 3

1 5.358 5.366 SS 3.428 3.433 SS 2.379 2.382 SS

2 6.640 6.644 AA 5.275 5.278 AA 4.373 4.375 AA

3 14.60 14.62 SA 9.511 9.541 AS 6.596 6.617 AS

4 14.85 14.90 AS 11.31 11.33 SA 9.233 9.244 SA

5 21.97 22.00 SS 18.53 18.63 SS 12.96 13.03 SS

6 25.31 25.38 AA 18.87 18.92 AA 15.04 15.07 AA

7 25.96 26.00 AS 22.41 22.45 SS 21.16 21.31 AS

8 29.53 29.68 SS 24.40 24.44 AS 22.19 22.23 SS

9 35.97 36.04 SS 28.62 28.75 SA 22.19 22.29 SA

10 39.86 40.05 SA 31.38 31.45 SS 24.29 24.35 AS

11 48.16 48.45 AS 31.39 31.63 AS 28.60 28.67 SS

12 50.33 50.58 AS 40.96 41.22 AS 31.02 31.23 AA
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Fig. 3. Fundamental natural frequency parameters for a square plate by the FDM and the SM.
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increased. As noted in the case of the fundamental natural frequency, the rate of convergence of the SM
proved to be always very good and was significantly faster than that of the FDM but for all the cases tested,
the convergence of the FDM was from below while the SM converged from above.
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Table 2

Comparison of natural frequency parameters obtain by FDM with those in Leissa’s publication [1] for the doubly antisymmetric modes of

the square free plate (n ¼ 0.3)

Present Leissa

Lower bound Upper bound

b/a ¼ 1

13.46 13.092 13.474

69.04 66.508 69.576

76.95 75.146 77.411

b/a ¼ 1.25

10.75 10.479 10.761

50.15 48.352 50.487

69.27 67.665 69.746

b/a ¼ 1.5

8.926 8.6667 8.9351

38.05 36.651 38.294

66.50 64.844 66.965

b/a ¼ 2

6.640 6.4563 6.6464

25.31 24.417 25.455

58.32 56.151 59.051
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The work shows that Gorman’s SM gives excellent convergence in its results for the fundamental natural
frequency parameters with only 20 terms [2]. These results also confirm the prediction in a recent publication
[3] that gives a mathematical proof that the application of Gorman’s SM [2,11] would give upper bound results
for a free plate. No proof for the free plate appears to exist to the authors’ knowledge (it is proved that the
FDM gives lower bounds for the natural frequencies in only specific cases [8–10]), but the results show that
they are lower bounds for the natural frequencies of the completely free plates.

Although, exact results for completely free rectangular plates are not available, calculated values of the
natural frequencies confirm that the natural frequencies decrease with number of terms used in the SM and
increase with number of nodes used in the FDM. Thus the exact natural frequencies of a completely free plate
are bracketed by the results of the SM and the FDM.

In Table 2 the natural frequency parameters obtained by using the FDM are compared with the results
published in Leissa’s review [1]. The upper bound and lower bound results by Leissa were taken from Ref. [13].
It is seen that the results of the FDM are lower than published upper bounds but are higher than the
previously published lower bounds and are very close to the upper bounds indicating these may be the best
lower bound solutions available to date.

The natural frequency parameters in Table 1 give these bounds for completely free rectangular plates. These
appear to be the lowest upper bound and highest lower bound solutions available to date. Since the rate of
convergence of the SM is significantly faster, the upperbound results may be regarded as bench marks while
the difference between these and the lower bound results may be used to determine the maximum possible
error due to the discretisation.

4. Conclusion

The natural frequencies of completely free plates with various aspect ratios were computed by using the SM
and the FDM. The results by the FDM appear to be the best lower bounds for the natural frequencies of
completely free rectangular plates available so far, and there is excellent agreement between these and the
upperbound values found in earlier literature. The results seem to converge to exact natural frequencies of the
plates as the mesh size approaches to zero. The SM converges very quickly, significantly faster than the FDM.
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The maximum number of nodes used to compute the natural frequency parameters is limited to 55� 55 due
to computing limitations. It is expected that the discrepancy between the FDM and SM results could be
narrowed if the eigensolver is modified or if computer memory is increased. The work also shows that
Gorman’s SM gives excellent convergence in its results for the fundamental natural frequencies with only
20 terms.

The SM results may be regarded as bench marks results for completely free rectangular plates, although
they may not be exact. The FDM results presented in this paper together with the SM results give an estimate
of the maximum possible error in these bench mark values.

Acknowledgements

Some results of this study were presented [14] at the 6th International Symposium on Vibrations of
Continuous Systems. Comments and questions from the participants were very useful in preparing this
manuscript. The suggestions by a JSV reviewer have also helped to enhance the final version.
References

[1] A.W. Leissa, Vibration of plates, NASA SP-160, 1969.

[2] D.J. Gorman, Free vibration analysis of the completely free rectangular plate by the method of superposition, Journal of Sound and

Vibration 57 (1978) 437–447.

[3] S. Ilanko, On the bounds of Gorman’s superposition method of free vibration analysis, Journal of Sound and Vibration 294 (2006)

418–420.

[4] A.B. Ku, Upper and lower bounds for fundamental natural frequency of beams, Journal of Sound and Vibration 54 (1977) 311–316.

[5] R.D. Marangoni, L.M. Cook, N. Basavanhally, Upper and lower bounds to the natural frequencies of vibration of clamped

rectangular orthotropic plates, International Journal of Solids and Structures 14 (1978) 611–623.

[6] J.R. Kuttler, V.G. Sigillito, Upper and lower bounds for frequencies of trapezoidal and triangular plates, Journal of Sound and

Vibration 78 (1981) 585–590.

[7] R. Courant, Variational methods for the solution of problems of equilibrium and vibrations, Bulletin of the American Mathematical

Society 49 (1943) 1–23.

[8] H.F. Weinberger, Upper and lower bounds for eigenvalues by finite difference methods, Communication on Pure and Applied

Mathematics 9 (1956) 613–623.

[9] H.F. Weinberger, Lower bounds for higher eigenvalues by finite difference methods, Pacific Journal of Mathematics 8 (1958) 339–368.

[10] B. Hubbard, Bounds for eigenvalues of the free and fixed membrane by finite difference methods, Pacific Journal of Mathematics 11

(1961) 559–590.

[11] D.J. Gorman, Free Vibration Analysis of Rectangular Plates, Elsevier North Holland Inc., New York, 1982.

[12] Y. Mochida, Bounded Eigenvalues of Fully Clamped and Completely Free Rectangular Plates, ME Thesis, The University of

Waikato, 2007.

[13] N.W. Bazley, D.W. Fox, J.T. Stadter, Upper and lower bounds for the frequencies of rectangular plates, Journal of Applied

Mathematics and Physics 18 (1967) 445–460.

[14] Y. Mochida, S. Ilanko, Bounded eigenvalues of completely free rectangular plates, Proceedings of the Sixth International Symposium

on Vibrations of Continuous Systems, Squaw Valley, USA, July, 2007, pp. 22–24.


	Bounded natural frequencies of completely free �rectangular plates
	Introduction
	Procedure
	Governing differential equation
	Boundary conditions

	Result and discussion
	Conclusion
	Acknowledgements
	References


